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Part I: Additional exercises

1. Show that lim
n→∞

xn = x ∈ R if and only if every subsequence of (xn) has in turn a subsequence

(sometimes we use the word subsubsequence) that converges to x.

Proof. “ =⇒ ”: It is a direct consequence of Theorem 3.4.2. Let (xnk
) be any subsequence

of (xn). Then (xnk
) converges to x, which is a subsubsequence of (xnk

) itself.

“ ⇐= ”: We will prove by contradiction. Suppose (xn) does not converges to x. Then refer
to Theorem 3.4.4 and there exists some ε0 > 0 and a subsequence (xnk

) such that

|xnk
− x| ≥ ε0, ∀k ∈ N. (∗)

But by assumption, (xnk
) has a subsubsequence (xnkj

) which converges to x. Take ε = ε0 > 0,

then there exists N ∈ N such that

|xnkj
− x| < ε = ε0, ∀j ≥ N

which contradicts with (∗). Therefore, (xn) must converge to x.

2. Suppose (xn) is a monotone sequence of real numbers and (xn) has a convergent subse-
quence, show that (xn) itself is convergent.

Proof: WLOG, we assume that (xn) is an increasing sequence and has a subsequence (xnk
)

which converges to x ∈ R. Then we have that (xnk
) is bounded (also increasing) and

xnk
≤ x = sup{xnk

}, ∀k ∈ N.

∀k ∈ N, it indicates that xk ≤ xnk
≤ x since k ≤ nk (why?) and (xn) is increasing. Therefore,

(xn) itself is also bounded above and consequently convergent by MCT.

3. Let (xn) be a bounded sequence that does not converge to x ∈ R. Show that there exists a
subsequence of (xn) that converges to some x′ 6= x.

Proof: This is a variation of Theorem 3.4.9. Please refer to the textbook and also notice
that the condition that (xn) is bounded cannot be dropped.

4. (Generalizations of Ex 3.4.10) Let (xn) be a bounded sequence and for each n ∈ N let
sn := sup{xk : k ≥ n}.

(a) Show that (sn) is bounded.

(b) Show that (sn) is monotonically decreasing. Hence, by MCT we have that (sn) converges
to S = inf{sn} (In standard notations we denote it by lim supxn or lim

n→∞
xn).

(c) Show that there is a subsequence of (xn) that converges to S.
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(d) It is easily seen that the assumption that (xn) is bounded from above cannot be dropped.
However, show that the the assumption that (xn) is bounded from below cannot be
dropped either by giving a counterexample.

Solution:

(a)-(b) Refer to Prof. Chou’s lecture notes.

(c) Since S = inf{sn}, for any n ∈ N we can choose mn such that S ≤ smn < S +
1

n
.

Now by definition smn = sup{xk : k ≥ mn} and thus we can choose kn ≥ mn such that

smn −
1

n
< xkn ≤ smn .

Consider the subsequence (xkn) and it converges to S because

S − 1

n
≤ smn −

1

n
< xkn ≤ smn< S +

1

n
, ∀n ∈ N.

(d) Consider the sequence (xn) = (−1,−2,−3,−4, · · · ) which is not bounded from below.
Then sn = −n and (sn) does not converge to any real number.

Part II: Some comments

1. Suppose (xn) is a sequence of real numbers defined by xn =
n

n+ 1
cos

nπ

2
. We can find

lim
n→∞

xn, lim
n→∞

xn in two ways.

First, by definition we have (please check the following results yourselves)

sn = sup{xk : k ≥ n} = 1, in = inf{xk : k ≥ n} = −1

and thus
lim
n→∞

xn = inf{sn} = 1, lim
n→∞

xn = sup{in} = −1.

On the other hand, we can find the set of limit points of (xn) as to be S = {−1, 0, 1} and
therefore

lim
n→∞

xn = supS = 1, lim
n→∞

xn = inf S = −1.

2. In the definition of Cauchy sequence, the indices m,n should be independent (however, we
can always assume that m > n in applications). They are arbitrary, as long as large enough
(≥ H(ε)).

But when proving that a given sequence is NOT a Cauchy sequence, we are allowed to (and
it is usually useful) to specify a relation between m and n.

We cannot emphasize the importance of Cauchy criteria too much. You will meet it frequently
in your later study and you should have a good understanding of Cauchy criteria.

Remark: The definition of a sequence (xn) that violates Cauchy criteria is: there exists
some ε0 > 0 such that ∀N ∈ N, there exist natural numbers n0 > N,m0 > N such that

|xn0 − xm0| ≥ ε0.

m0, n0 here can have a relation with each other.
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3. (3.4.5) Divergence Criteria is very useful and usually much more convenient than proving

by definition. For example, in Quiz 2b you are required to show the sequence

{
1,

1

2
, 1,

1

3
, 1,

1

4
, 1, · · ·

}
is divergent. Now we can find two subsequences that have different limits:

(1, 1, 1, · · · )→ 1,

(
1

2
,
1

3
,
1

4
, · · ·

)
→ 0 as n→∞.

4. Two common mistakes you made in Assignments 5-6

(a) 3.3.10 Some of you use

lim
n→∞

yn = lim
n→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n

)
= lim

n→∞

1

n+ 1
+· · ·+ lim

n→∞

1

2n
= 0+· · ·+0 = 0

which is definitely wrong.

When using the limit theorem

lim(an + bn + · · ·+ zn) = lim an + lim bn + · · ·+ lim zn

the number of sequences involved is finite and fixed. But in our question the number
of terms increases to infinity.

The same mistake appears in Supplementary Exercise 2 in Assignment 5.

(b) 3.4.7(d) Let en =

(
1 +

1

n

)n

. It is known that (en)→ e by definition. But it is illegal

to derive

lim
n→∞

(
1 +

2

n

)n

= lim
n→∞

[(
1 +

2

n

)n
2

]2
= e2

by regarding

(
1 +

1

n/2

)n
2

→ e as a subsequence of (en) (In fact it is NOT a subsequence

of (en)).

Part III: other problems.

1. (Ex 3.5.6) Let p be a given natural number. Give an example of a sequence (xn) that is
not a Cauchy sequence, but that satisfies lim |xn+p − xn| = 0.

Ans: Let xn = 1 +
1

2
+ · · · + 1

n
be the example in 3.3.3 (b). Then (xn) is not a sequence

since it is divergent (you can also refer to the proof of divergence on page 73). However,

0 < |xn+p − xn| =
1

n+ 1
+ · · ·+ 1

n+ p
<

p

n+ 1

and by Squeeze Theorem we have lim
n→∞

|xn+p − xn| = 0.



4

2. (Ex 3.4.16) Given an example to show that Theorem 3.4.9 fails if the hypothesis that X is
a bounded sequence is dropped.

Solutions: Consider the sequence

(xn) =

(
1,

1

2
, 3,

1

4
, 5,

1

6
, · · ·

)
.

It can be checked that every convergent subsequence of (xn) converges to x = 0 ((xn) has
only one limit point 0). However, (xn) does not converge to 0.

3. (Generalizations of Ex 3.4.19) If (xn) and (yn) are bounded sequences, show that

(a) lim
n→∞

xn + lim
n→∞

yn ≤ lim
n→∞

(xn + yn) ≤ lim
n→∞

xn + lim
n→∞

yn;

(b) lim
n→∞

xn + lim
n→∞

yn ≤ lim
n→∞

(xn + yn) ≤ lim
n→∞

xn + lim
n→∞

yn.

For each relation above, give an example for which strict inequality holds.

Solution:

(a) 1◦. From Question 4(c) in Part I, there exists a subsequence (xnk
+ ynk

) of (xn + yn)
such that (xnk

+ ynk
)→ lim

n→∞
(xn + yn) := c.

Now for the subsequence (xnk
), there exists a subsubsequence (xnki

)→ lim
n→∞

xnk
:= a′.

Since
(ynki

) = (xnki
+ ynki

)− (xnki
)→ c− a′, (why?)

c− a′ is a limit point of (yn) and thus

c− a′ ≥ lim
n→∞

yn.

Moreover, a′ = lim
n→∞

xnk
≥ lim

n→∞
xn (think about why) and therefore,

lim
n→∞

(xn + yn)− lim
n→∞

xn ≥ c− a′ ≥ lim
n→∞

yn =⇒ lim
n→∞

xn + lim
n→∞

yn ≤ lim
n→∞

(xn + yn).

2◦. Similarly, there exists a subsequence (xnk
) of (xn) such that (xnk

) → lim
n→∞

xn := a.

Now for the subsequence (ynk
), there exists a subsubsequence (ynki

) such that

(ynki
)→ lim

n→∞
ynk

:= B′

Since
(xnkj

+ ynkj
)→ a+B′, (why?)

a+B′ is a limit point of (xn + yn) and thus

a+B′ ≥ lim
n→∞

(xn + yn).

Moreover, B′ = lim
n→∞

ynk
≤ lim

n→∞
yn (think about why) and therefore,

lim
n→∞

(xn + yn) ≤ a+B′ = lim
n→∞

xn + lim
n→∞

ynk
≤ lim

n→∞
xn + lim

n→∞
yn.
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3◦. For examples, consider

(xn) = (1, 0, 1, 0, 1, 0, · · · ),
(yn) = (0, 2, 0, 2, 0, 2, · · · ),

(xn + yn) = (1, 2, 1, 2, 1, 2, · · · ).

Then
lim
n→∞

xn = 0, lim
n→∞

yn = 0, lim
n→∞

(xn + yn) = 1, lim
n→∞

yn = 2.

(b) Similar to (a), complete it yourself.

4. (Question 2 on Feb 7 continued).

(a) Show that the conclusion in Question 2(a) on Feb 7 still holds if (xn) is properly diver-
gent, i.e.,

lim
n→∞

xn = +∞ =⇒ lim
n→∞

x1 + x2 + · · ·+ xn
n

= +∞.

(b) Suppose (xn) is a sequence of positive real numbers which converges to x. Show that

lim
n→∞

n
√
x1x2 · · · xn = x.

(Hint: use the natural logarithm)

(c) (Question 3 on Feb 7 continued: relation between ratio test and root test)
Suppose (xn) is a sequence of positive real numbers. Show that

lim
n→∞

xn+1

xn
= x =⇒ lim

n→∞
n
√
xn = x.

(d) Use (c) to find the limit lim
n→∞

n
n
√
n!
.

(e) Show that the converse of (c) is false by giving a counterexample.

(f) Suppose (xn), (yn) are two sequences of real numbers and lim
n→∞

xn = x, lim
n→∞

yn = y.

Define a new sequence (zn) by

zn =
x1yn + x2yn−1 + · · ·+ xny1

n
.

Show that (zn) is also convergent and

lim
n→∞

zn = xy.

Solution:

(a) Similar to Question 2(a) on Feb 7. Since lim
n→∞

xn = +∞ =⇒ ∀M > 0 there exists

N1 ∈ N such that xn ≥ 3M whenever n ≥ N1.

By Archimedean Property, there exists N2 ∈ N such that

|SN1|
n

=
|x1 + x2 + · · ·+ xN1|

n
≤ M

2
,

n−N1

n
>

1

2
whenever n ≥ N2.



6

Then for any n ≥ N := max(N1, N2), we have

|An| =
|x1 + x2 + · · ·+ xn|

n
=
|x1 + x2 + · · ·+ xN1 + xN1+1 + · · ·+ xn|

n

≥ |xN1+1 + · · ·+ xn| − |x1 + x2 + · · ·+ xN1|
n

≥ 3M(n−N1)− |x1 + x2 + · · ·+ xN1 |
n

≥ 3M · n−N1

n
− |x1 + x2 + · · ·+ xN1|

n

≥ 3M · 1

2
− M

2
= M.

Therefore, lim
n→∞

An = +∞, i.e., An is also properly divergent.

(b) It can be seen that x ≥ 0.

1◦. If x > 0, then lim
n→∞

lnxn = lnx and we can use the result of Question 2(a) on Feb 7

to obtain

lim
n→∞

lnx1 + lnx2 + · · ·+ lnxn
n

= lnx

and
lim
n→∞

n
√
x1x2 · · ·xn = lim

n→∞
e

ln x1+ln x2+···+ln xn
n = elnx = x.

2◦. If x = 0, then lim
n→∞

(− lnxn) = +∞ and by (a) we have

lim
n→∞

− lnx1 − lnx2 − · · · − lnxn
n

= +∞

and hence
lim
n→∞

n
√
x1x2 · · ·xn = lim

n→∞
e−

− ln x1−ln x2−···−ln xn
n = 0.

(c) Let yn =
xn+1

xn
, n = 1, 2, 3, · · · . Then (yn) is a sequence of positive real numbers which

converges to x. From (b) we have

lim
n→∞

n
√
y1y2 · · · yn = x,

=⇒ lim
n→∞

n

√
x2
x1

x3
x2
· · · xn+1

xn
= lim

n→∞
n

√
xn+1

x1
= lim

n→∞

n
√
xn+1

n
√
xn

= x.

It is a known result that limn→∞ n
√
x1 = 1 and we conclude that

lim
n→∞

n
√
xn+1 = x =⇒ lim

n→∞
n
√
xn = x.

(d) Notice that
n

n
√
n!

= n
√
xn where xn =

nn

n!
. Since

lim
n→∞

xn+1

xn
= lim

n→∞

(
(n+ 1)n+1

(n+ 1)!
· n!

nn

)
= lim

n→∞

(
n+ 1

n

)n

= e

we conclude from (c) that lim
n→∞

n
n
√
n!

= e.
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(e) Consider the sequence

(xn) =

(
1, 1,

1

2
,
1

2
,

1

22
,

1

22
,

1

23
,

1

23
, · · ·

)
.

Then we have lim
n→∞

n
√
xn =

1√
2
< 1 (check it yourself) and it follows that (xn) converges

to 0. But ratio test fails because(
xn+1

xn

)
=

(
1,

1

2
, 1,

1

2
, 1,

1

2
, · · ·

)
is divergent.

Remark: This question indicates that root test is stronger than ratio test.

(f) zn can be rewritten as

(x1 − x)yn + (x2 − x)yn−1 + · · ·+ (xn − x)y1
n

+ x · yn + yn−1 + · · ·+ y1
n

:= S1 + S2.

(yn) is convergent ⇒ (yn) is bounded by some positive number M . Therefore,

|S1| ≤
|x1 − x||yn|+ |x2 − x||yn−1|+ · · ·+ |xn − x||y1|

n

≤ |x1 − x|+ |x2 − x|+ · · ·+ |xn − x|
n

M.

Now (xn)→ x =⇒ (xn − x)→ 0 =⇒ (|xn − x|)→ 0 and hence

lim
n→∞

|x1 − x|+ |x2 − x|+ · · ·+ |xn − x|
n

= 0 =⇒ lim
n→∞

S1 = 0.

Therefore,

lim
n→∞

zn = 0 + x · lim
n→∞

yn + yn−1 + · · ·+ y1
n

= 0 + x · y = xy.

Part IV: On the mid-term examination

The topics we have studied:

• Real number system

– The algebraic and order properties of R
– The Completeness Property of R

• Limit of a sequence

– Sequence and its limit

– Limit theorems

– Monotone Convergence Theorem
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– Subsequence and Bolzano-Weierstrass Theorem

– Cauchy sequence

You should not expect the mid-term exam to be so easy as previous quizzes. Here are my
suggestions:

• Familiarize yourself with all the theorems in the textbook and Prof’s lecture notes, espe-
cially those bearing a name.

• Make sure that you have done ALL the exercises in the textbook yourself.


